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Background

Number of cores in CPUs is increasing

Relatively soon 8 cores will be commonplace

Performance per core is not increasing so much
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Background

Calc so far single-threaded
Performance will not improve much no matter how 
many cores the machine has

OpenCL was supposed to be the solution
Typically runs on GPU, but can also run on CPU
For various reasons using OpenCL in LibreOffice did 
not work out as as nicely as expected
The OpenCL-generating code is hideously complicated
Very few developers even capable to work on it because 
of hardware/software issues
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Background

Formula groups
Introduced as part of the OpenCL work some years ago
Used when multiply sequential formulas in a column 
are “identical”: cell references are either absolute or to 
cells at an identical row and column offset 
For example:
B1: =SUM(A$1:1)/D$1 + C1
B2: =SUM(A$1:2)/D$1 + C2
B3: =SUM(A$1:3)/D$1 + C3

Only done vertically. That is how repeated formulas 
occur in practice.
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Background

Each formula group is calculated as a whole, using either 
OpenCL or the “software interpreter”

Input for those two calculation methods is collected into 
a packed vector of values, and output is stored in a such 
during computation. Afterwards the output is stored into 
the formula group’s cells.
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Plans

Instead of OpenCL, threading of Calc should thus be 
done using plain C++ code

Lots of challenges with that
Multi-threading aspects have not really been a concern 
when the Calc code has been written
Data structures sub-optimal for multi-threaded use
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What done

Approach to be taken: Find the right place where to start 
threads, and just do it. Check what breaks. Fix. Iterate.

Initial work done
Results fairly promising
For trivial but large sheets speedup in the order of 
number of threads
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Future

Eventually OpenCL could be retired

Optionality of “software interpreter” should really go 
away. The less options the better. Use it automatically 
when it makes sense.
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Implementaton plan

Add a fourth code path for formula cell calculation

Existing:
Plain traditional single-threaded, one formula cell at a 
time
Formula group with “software interpreter”
Formula group with OpenCL

New:
Formula group in parallel 
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Implementaton questons 

When to use the parallel calculation?
When OpenCL is not available?
Also when there is OpenCL, but the formula is not 
eligible for OpenCL?
Should the “software interpreter” be preferred when 
eligible?
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Implementaton

Basic steps, examples:
Make a few random static local variables thread-local

         case ScMatrixMode::Reference :
         {
-            static SCCOL nC;
-            static SCROW nR;
+            static thread_local SCCOL nC;
+            static thread_local SCROW nR;
             ScAddress aOrg;
             if ( !GetMatrixOrigin( aOrg ) )
                 return sc::MatrixEdge::Nothing;
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Implementaton

Basic steps, examples:
Make a static local variable thread-local, or otherwise make 
the function multi-thread safe
We used to have:

bool ScTable::ValidQuery(
    SCROW nRow, const ScQueryParam& rParam, ScRefCellValue* pCell, bool* pbTestEqualCondition)
{
    SCSIZE nEntryCount = rParam.GetEntryCount();

    typedef std::pair<bool,bool> ResultType;
    static std::vector<ResultType> aResults;
    if (aResults.size() < nEntryCount)
        aResults.resize(nEntryCount);
…

Just revert this optimisation
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Implementaton

Basic steps, more:
Move iterator index of FormulaTokenArray out of the 
class into separate class

class FORMULA_DLLPUBLIC FormulaTokenArray
{
…
    FormulaToken**  pCode;                  // Token code array
    FormulaToken**  pRPN;                   // RPN array
    sal_uInt16      nLen;                   // Length of token array
    sal_uInt16      nRPN;                   // Length of RPN array
    sal_uInt16      nIndex;                 // Current step index
    FormulaError    nError;                 // Error code

Instead added a separate iterator class
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Implementaton

Run threads in ScFormulaCell:: 
InterpretFormulaGroup()
Split work into as equal pieces as possible
Use same minimum formula group size as for OpenCL.
Except that we now use “weight,” not just size. Also 
number of input cells taken into account.
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Implementaton

Before running threads, calculate values of cells 
referenced by the formula where necessary, to avoid 
threaded recursive interpretation

Make sure through assertions that when doing threaded 
calculation, shared data structures are not mutated.

For example, don’t manipulate the formula “tree” 
(actually a list) while in threads
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Implementaton

A Calc document is represented by a ScDocument

It also holds much stuff that is related to formula 
interpretation

This is obviously a problem when running multiple 
interpreters (ScInterpreter) in parallel
Move those fields into a new struct, ScInterpreterContext
Allocate a such for each interpreter thread, pass around 
to functions that need it
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Implementaton

So far in experimentation it has worked surprisingly well

Simple cases indeed speed up as expected

But in some cases not that much

Tweaks needed
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Thanks to AMD for funding this work
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Thank you

Tor Lillqvist
@TorLillqvist

tml@collabora.com
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