
www.collaboraofce.com

Making Calc
Calculate
in Parallel

Tor Lillqvist
Collabora Productvity

@TorLillqvist

https://www.collaboraoffice.com/

www.collaboraofce.com

https://www.collaboraoffice.com/

Background

www.collaboraofce.com

Background

Number of cores in CPUs is increasing

Relatively soon 8 cores will be commonplace

Performance per core is not increasing so much

https://www.collaboraoffice.com/

www.collaboraofce.com

Background

Calc so far single-threaded
Performance will not improve much no matter how
many cores the machine has

OpenCL was supposed to be the solution
Typically runs on GPU, but can also run on CPU
For various reasons using OpenCL in LibreOffice did
not work out as as nicely as expected
The OpenCL-generating code is hideously complicated
Very few developers even capable to work on it because
of hardware/software issues

https://www.collaboraoffice.com/

www.collaboraofce.com

Background

Formula groups
Introduced as part of the OpenCL work some years ago
Used when multiply sequential formulas in a column
are “identical”: cell references are either absolute or to
cells at an identical row and column offset
For example:
B1: =SUM(A$1:1)/D$1 + C1
B2: =SUM(A$1:2)/D$1 + C2
B3: =SUM(A$1:3)/D$1 + C3

Only done vertically. That is how repeated formulas
occur in practice.

https://www.collaboraoffice.com/

www.collaboraofce.com

Background

Each formula group is calculated as a whole, using either
OpenCL or the “software interpreter”

Input for those two calculation methods is collected into
a packed vector of values, and output is stored in a such
during computation. Afterwards the output is stored into
the formula group’s cells.

https://www.collaboraoffice.com/

www.collaboraofce.com

https://www.collaboraoffice.com/

Future

www.collaboraofce.com

Plans

Instead of OpenCL, threading of Calc should thus be
done using plain C++ code

Lots of challenges with that
Multi-threading aspects have not really been a concern
when the Calc code has been written
Data structures sub-optimal for multi-threaded use

https://www.collaboraoffice.com/

www.collaboraofce.com

What done

Approach to be taken: Find the right place where to start
threads, and just do it. Check what breaks. Fix. Iterate.

Initial work done
Results fairly promising
For trivial but large sheets speedup in the order of
number of threads

https://www.collaboraoffice.com/

www.collaboraofce.com

Future

Eventually OpenCL could be retired

Optionality of “software interpreter” should really go
away. The less options the better. Use it automatically
when it makes sense.

https://www.collaboraoffice.com/

www.collaboraofce.com

https://www.collaboraoffice.com/

Implementaton

www.collaboraofce.com

Implementaton plan

Add a fourth code path for formula cell calculation

Existing:
Plain traditional single-threaded, one formula cell at a
time
Formula group with “software interpreter”
Formula group with OpenCL

New:
Formula group in parallel

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton questons

When to use the parallel calculation?
When OpenCL is not available?
Also when there is OpenCL, but the formula is not
eligible for OpenCL?
Should the “software interpreter” be preferred when
eligible?

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

Basic steps, examples:
Make a few random static local variables thread-local

 case ScMatrixMode::Reference :
 {
- static SCCOL nC;
- static SCROW nR;
+ static thread_local SCCOL nC;
+ static thread_local SCROW nR;
 ScAddress aOrg;
 if (!GetMatrixOrigin(aOrg))
 return sc::MatrixEdge::Nothing;

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

Basic steps, examples:
Make a static local variable thread-local, or otherwise make
the function multi-thread safe
We used to have:

bool ScTable::ValidQuery(
 SCROW nRow, const ScQueryParam& rParam, ScRefCellValue* pCell, bool* pbTestEqualCondition)
{
 SCSIZE nEntryCount = rParam.GetEntryCount();

 typedef std::pair<bool,bool> ResultType;
 static std::vector<ResultType> aResults;
 if (aResults.size() < nEntryCount)
 aResults.resize(nEntryCount);
…

Just revert this optimisation

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

Basic steps, more:
Move iterator index of FormulaTokenArray out of the
class into separate class

class FORMULA_DLLPUBLIC FormulaTokenArray
{
…
 FormulaToken** pCode; // Token code array
 FormulaToken** pRPN; // RPN array
 sal_uInt16 nLen; // Length of token array
 sal_uInt16 nRPN; // Length of RPN array
 sal_uInt16 nIndex; // Current step index
 FormulaError nError; // Error code

Instead added a separate iterator class

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

Run threads in ScFormulaCell::
InterpretFormulaGroup()
Split work into as equal pieces as possible
Use same minimum formula group size as for OpenCL.
Except that we now use “weight,” not just size. Also
number of input cells taken into account.

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

Before running threads, calculate values of cells
referenced by the formula where necessary, to avoid
threaded recursive interpretation

Make sure through assertions that when doing threaded
calculation, shared data structures are not mutated.

For example, don’t manipulate the formula “tree”
(actually a list) while in threads

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

A Calc document is represented by a ScDocument

It also holds much stuff that is related to formula
interpretation

This is obviously a problem when running multiple
interpreters (ScInterpreter) in parallel
Move those fields into a new struct, ScInterpreterContext
Allocate a such for each interpreter thread, pass around
to functions that need it

https://www.collaboraoffice.com/

www.collaboraofce.com

Implementaton

So far in experimentation it has worked surprisingly well

Simple cases indeed speed up as expected

But in some cases not that much

Tweaks needed

https://www.collaboraoffice.com/

www.collaboraofce.com

Thanks to AMD for funding this work

https://www.collaboraoffice.com/

www.collaboraofce.com

https://www.collaboraoffice.com/

Thank you

Tor Lillqvist
@TorLillqvist

tml@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

