
1

CIB SOFTWARE GMBH
TIRANA, FRIDAY 27. SEPTEMBER 2018

ARMIN LE GRAND

REPLACEMENT OF LIBREOFFICE SVG FILTER 
IN FAVOR OF SVGIO



2

CONTENT

1. WELCOME!
2. MOTIVATION
3. PLANNING
4. GET RID OF THE DOCUMENT-SVG 

IMPORTER
5. REPLACE WITH SVGIO-BASED IMPORTER 
6. CAVEATS
7. ADDITIONAL BENEFITS
8. TODO



3

WELCOME!

> This talk describes the actions taken to replace the 
existing LibreOffice SVG filter in favour of SVGIO.

> It will describe the motivation and reasons behind it, 
the pros and cons and the technical steps taken to 
do so.

> It will explain the advantages and the achieved 
progess in doing this.

> It will also contain a live experimental part to 
present the now existing turn-arounds and quality 
achievements when using the newly implemented 
Filter based on SVGIO.



4

WELCOME!

> Thanks go to

TDF & their donors

...for sponsoring this work!



5

MOTIVATION

● There is a SVG Import, why change it at all?
● State of SVG Import(s) before the change

– There were two different SVG ‚Imports‘
● Opening a SVG as Document → OpenAsDocument
● Inserting a SVG Graphic into a Document→ Insert

– Handling different tasks (Document/inserted Graphic)
– Using different methods to Import (for historical reasons)
– Leading to different results

● Problems
– Inconsistencies (User View, different quality)
– Two Importers to maintain (Developer View)



6

MOTIVATION

● OpenAsDocument Import technique used:
– Based on regular ODF importer
– Creates DOM-Tree in ASCII on demand
– Works like a Unix-Pipe

● Import technique used when inserting as Graphic:
– Uses separated SVG DOM-Tree import
– Creates Sequence of Primitives

● e.g. adding special ‚SVG-Gradients‘
– Keeps and holds original data (exports, re-interpret)
– On-demand interpretation/decomposition



7

MOTIVATION

● Do we really need two Importers for SVG?
– Users do not understand the difference
– Double work all the time (Developer View)
– Risk of ‚influences‘ to regular ODF importer

● How to get to a possible SVG turn-around?
– Needs a SVG Exporter
– There is a SVG exporter for Draw and Impress
– Too much work for one change to also change that
– Even Multi-Page support – somewhat SVG1.2
– Combined with massive added JavaScript stuff for creating 

a Presentation-like Export



8

PLANNING

● To solve…
– Get rid of the Document-SVG Importer
– Replace with SVGIO-based Importer
– Maintain the Multi-Page setup
– Do not touch the existing Exporter (anyone…?)
– Capability to create Draw or Impress Documents
– As-good-as-possible turn-arounds

● Page-size
● Quality
● Keep original Data (?)

– Doable in a given Time-Frame



9

GET RID OF THE DOCUMENT-SVG IMPORTER

● Systematically strip code
– Lots of experience doing this (AW080)
– Let the compiler help you :-)
– Try to identify all unused stuff (not easy)

● Keep Import filter
● Do not hurt basic starting points in code



10

REPLACE WITH SVGIO-BASED IMPORTER

● Re-Use Import filter, but do different things
● Create SVG-Primitive

– Contains the SVG as ‚data-blob‘
– Decoposes to Sequence of Primitives

● Read SVG as single SVG-Primitive
● Get the Size

– Primitives already support getting the B2DRange
– Needed some squeezing to speedup

● Can directly create B2DRange Info from SVG Header

● Based on Size, create a Document
– Maybe ceate a Draw or Impress Document



11

REPLACE WITH SVGIO-BASED IMPORTER

● Insert a SdrGrahicObject to the 1st Page of that 
Document

● Adapt to Size, Position it
● Adapt PageSize, take PageBorders into account
● Set the Imported SVG Graphic as content at the 

SdrGraphicObject

● At this point, the SVG is still not interpreted – not 
necessary yet :-)



12

CAVEATS

● How to detect from the currently written SVG if it is 
Draw or Impress?
– Don‘t ask, but it‘s possible by identifying some nodes in 

DOM-Tree
– Leaded to abstract/unify the SVG FilterDetector to also do 

this job if needed → Output adapted to more than just 
detected Type

● How to then create the correct document type?
– Due to detecting in Filter possible now at the right time
– Needs technically two different filter entries
– Using the same TypeDetector, but triggering different 

Filters (which use the same implementation)



13

CAVEATS

● How to detect Multi-Page?
– Needs a PrimitiveProcessor deep-diving to the imported 

SVG – in most cases, the 1st 500 bytes are enough
– Thanks to Primitives, encapsulation to MultiPage-Parts is 

possible
– BTW: A problem that needs unification, also for Bitmap-

Graphics (GIF, Multi-Page TIFFs – FAX, ...)

● How to create Multi-Page?
– Need to ‚split‘ imported SVG
– On SVG-Level or Primitive-Level?
– Missing part – ran out of time, but Idea developed
– Current Import is in one Page only



14

ADDITIONAL BENEFITS

● Unify Vector-Based Importers
– SVG already was isolated in an own module
– Why not do the same for GdiMetafile/GDI+

● Just did that, moved and isolated all that old code
– SVG already used UNO API Isolation and original Data 

Buffering
– Why not do the same for GdiMetafile/GDI+

● Did that, too

● Vector-Based Input Formats are now all unified
● Result is always a Sequence of Primitives



15

ADDITIONAL BENEFITS

● Old code adaption: A PrimitiveProcessor extracting 
the GdiMetaFile (if needed – not for paint :-) )

● Done using a GdiMetafilePrimitive → 
Decomposition is the Sequence of Primitives 
representation

● This is the base for a paradigm change for future 
GraphicData Importers
– Always Buffer original Data (wherever, Mem-File, ...)
– Decompose on-demand
– Offer access to Primitive representation
– Be accessible using UNO API



16

ADDITIONAL BENEFITS

● UNO API concrete:
– Class BasePrimitive2D is based on 

css::graphic::Xprimitive2D
– A Primitive/sequence<Primitive> can be handed over the 

UNO API
– XprimitiveFactory2D allows to get sequence<Primitive> 

from
– drawing::Xshape
– drawing::XdrawPage
– You can import SVG and EMF/WMF/WMF+ using
– XsvgParser
– XEmfParser



17

ADDITIONAL BENEFITS

● UNO API concrete:
– You can use Xprimitive2DRenderer to get a rasterized 

version of your sequence<Primitive> based on given 
parameters

– With this UNO API tooling you can already write a SVG-to-
Bitmap converter or get the containing rectangle of any 
Xshape/XdrawPage

– Theoretically you could also implement own Primitives and 
use, but you can not use existing basic primitives to 
implement the decomposition



18

TODO

● Add missing support to get real Multi-Page 
document Turn-Around

● Maybe enhance and unify Import Formats including 
Bitmap-Data
– Preserve Original Data

● Allow save the unchanged GraphicData
● Allow export (Context Menu)

– Use as Base for Swapping/TempFiles
– Use as Base for always having a fast Thumbnail

Lots of Tasks to do – furher Love and Support 
needed :-)



THANK YOU!

OUR PRODUCTS:

HTTP://LIBREOFFICE.CIB.DE/ 

WE CAN HELP:

HTTP://LIBREOFFICE.CIB.DE/SUPPORT 

http://libreoffice.cib.de/
http://libreoffice.cib.de/support

	Titel
	Slide 2
	Begrüssung und Vorstellung
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Dankeschön!

