
Collabora Productivity www.collaboraoffice.com

Collabora Productivity

Async dialog
execution – What it is
and why it’s needed
By Jan Holešovský
Collabora Productivity

kendy@collabora.com @JHolesovsky +holesovsky skype: janholes

mailto:kendy@collabora.com
https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

LibreOffice Online: Server part

The Websocket Daemon - loolwsd

● Manages communication with file storage via WOPI protocol

● Spawns LibreOffice instances via LibreOfficeKit (LOK) and
manages their lifecycle

● These take care of rendering of the document

● Manages the user’s interaction with the document

● Passing commands to LOK

● Passing callbacks back to the JavaScript clients

● All this is in C++

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

LibreOffice Online: Client part

Loleaflet

● Written in JavaScript, based on ‘leaflet’ - framework for map
rendering

● Communicates with loolwsd

● The document itself consists
of tiles:

● Menus, toolbars, status bar

● All that is JS

But: it’s very impractical to reimplement everything in JS...

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Finding the Right Balance: JS vs. Core

Initially everything was rendered by LibreOffice

● In the early prototypes – no tiles, just gtk broadway

● Then we decided to use the tiled approach

● Cursors, selections – all that turned to be impractical in tiles,
and we started rendering that separately, in an overlay

● Comments and redlining were next, those needed too much
interaction when in tiles

● Also they look better in JS
(possibility to animate etc.)

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

But what about dialogs?

We started adding JS ones

● Find / replace, special character, insert table, …

● Lengthy process! Needed something better…

Dialog tunneling!

● Just reuse all the dialogs that are already there in LibreOffice

● The plan: Let the core render them, and pass them as bitmaps
to Online

● Nearly a year later: finally done ;-)

● Most of the hard work done by Pranav Kant, big thanks!

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Working!

The following features are now exposed

● Advanced character, paragraph and page properties

● Line, fill, cell properties, etc.

● All that collaboratively!

https://www.collaboraoffice.com/

Technical Details

Collabora Productivity www.collaboraoffice.com

How Does it Work?

Nearly everything is done down in VCL

● Added various callbacks – dialog created, invalidate, etc.

● Reusing the dialog screenshotting feature for rendering the
content

● Added a concept of LOKNotifier

● Most of the LOK notification is done in sfx2 – but that is a
higher layer

● LOKNotifier is an interface that is instantiated in sfx2, but
can be used in VCL – for the notifications about dialog
creation, what was invalidated, where to paint

● LibreOfficeKit extended accordingly

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

LibreOfficeKit Extensions for Dialog Tunneling

Methods

● void paintWindow(unsigned nWindowId, unsigned char* pBuffer, const int x, const int y,
const int width, const int height)

● void postWindow(unsigned nWindowId, int nAction)

● General events, so far only closing the window

● void postWindowKeyEvent(unsigned nWindowId, int nType, int nCharCode, int nKeyCode)

● void postWindowMouseEvent(unsigned nWindowId, int nType, int nX, int nY, int nCount, int
nButtons, int nModifier)

● void postWindowMouseEvent(unsigned nWindowId, int nType, int nX, int nY, int nCount, int
nButtons, int nModifier)

Callbacks

● LOK_CALLBACK_WINDOW, with a JSON payload

● Indicating actions like “created”, “title_changed”, “size_changed”, “invalidate”,
“cursor_invalidate”, “cursor_visible” and “close”

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Language Support

One document can be co-edited by multiple users

● And each of them can have their UI in a different language

● LibreOffice used static objects for the text resources

● ~All the places had to be converted:

- static std::locale loc(Translate::Create("cui"));
- return Translate::get(pKey, loc);
+ return Translate::get(pKey, Translate::Create("cui"));

● Similarly SfxModule had to be adapted to be able to switch
language when the view switches to a different user

https://www.collaboraoffice.com/

Converting dialogs to
async

Collabora Productivity www.collaboraoffice.com

Modal Dialogs

They call Execute() which blocks

● Not that events would stop flowing – Yield() called inside
Execute()

● Editing still works, AND two (or more) users can open the
same dialog just fine from different views!

● The problem is when they are to be closed & the changes have
to be applied

● All the Execute()’s have to end first before the execution
continues

● Problem! - one of the users can go for lunch in the
meantime, and the other never gets the changes applied

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Modal → Modal Async Execution

The solution is to convert the modal dialogs to async

● They still stay modal, but do not block in Execute() any more

● LibreOffice already had StartExecuteModal which was working fine, but the
converting code was leading to big amount to changes

● Introduced a new StartExecuteAsync() with a lambda – thanks Michael
Meeks

- ScopedVclPtr<SfxAbstractTabDialog> pDlg(pFact→CreateScAttrDlg(...));
+ VclPtr<SfxAbstractTabDialog> pDlg(pFact→CreateScAttrDlg(...));
[...]
- short nResult = pDlg→Execute();
+ std::shared_ptr<SfxRequest> pRequest(new SfxRequest(rReq));
+ pDlg->StartExecuteAsync([=](sal_Int32 nResult){
 [… the code that was previously following after Execute …]
+ });

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Non-modal dialogs

Work out of the box

● No conversion to asynchronous is necessary

● Usually they are using the sfx infrastructure

● Using the ChildWindow::RegisterChildWindow(SID_<name>)

● Show / hidden using ToggleChildWindow(SID_<name>)

● In the main event loop, no Execute() => no problem

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Usual Caveats

“I issued a dialog via .uno: command, but it does not appear in the Online”

● Most probably the dialog does not have a parent – uses nullptr

● Solution: Assign it a parent, ideally window of the view shell

“The dialog does not switch languages for users”

● Static variable holding the locale; but less of a problem these days after

conversion to gettext – thanks Caolán McNamara

● Solution: Find it & de-static-ize

Anything else

● Happy to help on the dev mailing list or on the IRC!

https://www.collaboraoffice.com/

Collabora Productivity

Thank You for Listening!

By Jan Holešovský
kendy@collabora.com @JHolesovsky +holesovsky skype: janholes

And the following people for working on
this:

Pranav Kant (main author of the
tunnelling), Henry Castro, Michael Meeks

mailto:kendy@collabora.com

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16

